After deciding against having off-season surgery on his right wrist, Penguins general manager Jim Rutherford told TSN 1050 on Wednesday that he expects the reigning Hart Trophy winner to be 100 percent when Pittsburgh opens training camp in September. Rutherford also discussed the Penguins off-season trade of James Neal, saying the move – along with the signings of Marcel Goc, Steve Downie and Blake Comeau – were made with the idea that the team lacked the bottom-six forward depth prevalent among Stanley Cup contenders. Rutherford: Crosby expected to be 100% by camp .C. -- Unable to get much lift off his sore right ankle, Bobcats centre Al Jefferson figured it was time to make an adjustment. . James Jones got his turn Sunday. And the lift he brought, combined with the expected playoff showings from LeBron James and Dwyane Wade, have the Heat off and running in these playoffs.
http://www.cheapfootballjerseyssale.com/.com) - Pavel Datsyuk and Gustav Nyquist both scored in the shootout as the Detroit Red Wings denied the Minnesota Wilds comeback bid with a 5-4 win on Tuesday. . Chelsea took until the second half to trouble the leagues bottom team, but Schuerrle then ripped through the defence with ease at Craven Cottage to keep Jose Mourinhos side on track for the title. . The government says top golfers are expected to compete in the PGA Tour event at the Ashburn Golf Club in the suburb of Fall River from July 3-6 and again next year.If there’s one area in hockey analytics that’s lagging behind, it’s primarily in the realm of goaltender studies. Outside of multi-year even-strength save percentage – which, of course, requires a goaltender to face thousands of shots over a series of seasons – there simply isn’t a ton to measure a goaltender’s true talent level. While save percentage is a decent metric over longer samples, it’s subject to the same, wild fluctuations that shooting percentage experiences in smaller ones. For one brief example, consider quickly the below table of six goaltenders around the league: Small Sample Goaltending Performance Goaltender Team 2014-2015 EV SV% Craig Anderson Ottawa .963 Corey Crawford Chicago .941 Ondrej Pavelec Winnipeg .929 Henrik Lundqvist N.Y. Rangers .916 Tuukka Rask Boston .914 Semyon Varlamov Colorado .907 Anyone willing to take the first three goaltenders over the next three goaltenders going forward? One of the things that clouds smaller sample save percentages, aside from random variance, is fluctuation in a team’s ability to prevent shooters from generating shot-attempts in scoring chance areas. This is particularly important, because we know shot distance correlates well with shooting percentage. Shot distance (as a proxy for “shot quality”) may pale in importance compared to territorial control in today’s National Hockey League, but it still holds a sliver of importance. And, since team effects aren’t equal across all thirty teams, it is data worth considering. Over at War on Ice, Andrew Thomas has started to compile save percentages for goaltenders adjusted based on the quality of the shots they have seen. His adjustments weight the likelihood of every shot against becoming a goal against based on the distance of said shot. Thus, his adjusted save percentage both captures the goaltender’s ability to stop shots, and the possibility that certain goaltenders simply face shots of varying difficulty due to team effects. The adjustments are fairly small, but in some cases, important. For example, if a goaltender stops 92% of shots he’s faced, is he playing well? Generally, the answer is yes. But what if he went through a three-week stretch where opposing teams haven’t been able to muster much in the scoring chance department? Is that 92% number still good? Is it possible that 92% is underwhelming, failing to meet expectations? By grabbing the unadjusted and adjusted EVSV% at War on Ice, we can quickly graph out what goaltenders are seeing their save percentages inflated a bit by relatively easy shot distance faced, and what goaltenders are seeing their save percentages deflated by relatively difficult shot distance faced. What I’ve done is charted the difference between the ‘Unadjusted EVSV%’ and ‘Adjusted EVSV% (here referred to as ‘Delta Quality’). Negative goaltenders see their save percentages drop after accounting for shot distance faced. Positive goaltenders see their save percentages rise after accounting for shot distance faced. DELTA SAVE PERCENTAGE Goalie Team Unadjusted EV SV% Adjusted EV SV% Delta EV SV% Henrik Lundqvist NYR 91.6% 92.6% +1.0% Cam Ward CAR 90.3% 91.3% +1.0% Semyon Varlamov COL 90.7% 91.5% +0.9% Carey Price MTL 91.6% 92.4% +0.8% Marc-Andre Fleury PIT 94.1% 94.6% +0.5% Kari LLehtonen DAL 92.dddddddddddd6% 93.1% +0.5% Mike Smith ARI 90.6% 90.9% +0.3% Michal Neuvirth BUF 92.5% 92.8% +0.3% Jonas Hiller CGY 93.6% 93.9% +0.3% Ondrej Pavelec WPG 92.9% 93.1% +0.2% Frederik Andersen ANA 94.8% 95.0% +0.2% Corey Crawford CHI 94.2% 94.4% +0.2% Jonathan Bernier TOR 92.4% 92.6% +0.1% Jaroslav Halak NYI 92.0% 92.1% +0.1% Jonathan Quick LA 95.3% 95.5% +0.1% Ryan Miller VAN 91.6% 91.7% +0.1% Ben Bishop TB 91.3% 91.4% +0.1% Ben Scrivens EDM 90.2% 90.2% 0.0% Jhonas Enroth BUF 91.8% 91.8% 0.0% Antti Niemi SJ 92.4% 92.4% 0.0% Jimmy Howard DET 92.1% 91.9% -0.2% Braden Holtby WSH 90.6% 90.3% -0.3% Roberto Luongo FLA 95.0% 94.7% -0.3% Brian Elliott STL 94.2% 93.6% -0.5% Pekka Rinne NSH 95.4% 94.9% -0.5% Sergei Bobrovsky CBJ 90.5% 89.8% -0.7% Cory Schneider NJ 92.6% 91.8% -0.8% Darcy Kuemper MIN 91.0% 90.2% -0.8% Craig Anderson OTT 96.3% 95.4% -0.9% Tuukka Rask BOS 91.5% 90.5% -1.1% Steve Mason PHI 92.0% 90.8% -1.3% Click here for a graphical representation of the above chart. At the poles, we can see a few notable goalies who see a fairly significant reduction or bump based on the shot distance of opposing shooters. The two most interesting goalies at the bottom, to me, are Craig Anderson and Tuukka Rask. Craig Anderson (.963 EVSV%, .954 aEVSV%) has been absolutely stellar for Ottawa, but maybe a small reason why the Senators have been piling up wins despite poor possession numbers is that their starting goaltender has seen slightly easier than expected shots against. Tuukka Rask (.914 EVSV%, .904 aEVSV%) is notable for another reason entirely – he’s struggled for Boston in the early going, but it’s not because he’s facing particularly difficult shots. Rask’s been one of the best goaltenders in the league for a long time and this is almost certainly a blip on the radar but, based on this, it’s possible he’s been even a bit worse than initially thought. On the other side, we see the polar opposite of Tuukka Rask in Henrik Lundqvist. Lundqvist (.916 EVSV%, .926 aEVSV%) has also seemed to struggle in the early parts of the season, but he sees a nice little bump in his adjusted percentages because the shots he’s faced have come from in-tight. Cam Ward (.889 EVSV%, .900 aEVSV%) has seen his percentages sliding for years now, and I think skepticism about his game is warranted at this point. But, here’s one data point in his favor – Carolina wasn’t particularly kind as a team to Ward, and he ends up with the most favorable adjustment in save percentage of any goalie in the league. Still, it should be noted that Ward’s adjusted save percentage doesn’t speak highly of him as a goalie. Adjusted save percentage is far from the singular data-point every hockey executive wants, but it is another tool in the tool belt – one that will help us just a bit in contextualizing goaltender performance. ' ' '